Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Electrospinning is increasingly used as a staple technology for the fabrication of nano‐ and micro‐fibers of different materials. Most processes utilize direct current (DC) electrospinning, and a multitude of DC‐electrospinning tools ranging from research to commercial production systems is currently available. Yet, there are numerous studies performed on electrospinning techniques utilizing non‐DC, periodic electric fields, or alternating current (AC) electrospinning. Those studies demonstrate the strong potential of AC‐electrospinning for the sustainable production of various nanofibrous materials and structures. Although tremendous progress is achieved in the development of AC‐electrospinning over the last 10 years, this technique remains uncommon. This paper reviews the AC‐electrospinning concepts, instrumentation, and technology. The main focus of this review is the most studied, “electric wind” driven AC‐electrospinning technique tentatively named alternating field electrospinning (AFES). The latter term emphasizes the role of the AC electric field's confinement to the fiber‐generating electrode and the absence of a counter electrode in such an electrospinning system. The synopses of AFES process parameters, fiber‐generating spinneret designs, benefits and obstacles, advancements in AC electrospun nano/micro‐fibrous materials/structures and their applications are given, and future directions are discussed.more » « less
-
Abstract Electrospun fish gelatin (FGel) nanofibers (NF) mimic the natural bodies extracellular matrix's (ECM) structure and are an attractive material for many biomedical applications. However, FGel poor mechanical properties and rapid dissolution in an aqueous media paired with usually low productivity of the typical electrospinning process necessitate further effort in overcoming these issues. In this study, alternating field electrospinning (AFES) fabricates cold water fish skin gelatin nanofibrous materials (FGel NFM) with up to 10 wt.% Dextran (DEX) or acetyl glucosamine (AGA) from pure aqueous solutions at process productivity of 7.92–8.90 g∙h−1. Thermal crosslinking of as‐spun materials resulted in FGel‐based NFM with 125–325 nm fiber diameters. DEX (MW500k and MW75k) and AGA additives cause different effects on FGel fiber diameters, structure, tensile and degradation behavior, and in vitro performance. All tested materials reveal favorable, but not the same, cellular response through the formation of a confluent layer on the NFM surface regardless of the fibers’ composition despite the significant difference in FGel NFM structure and properties. Results show that AFES and thermal crosslinking of FGel‐based NFM can lead to a sustainable “green” fabrication technology of mono‐ and polysaccharide modified FGel‐based NFM scaffolds with the parameters attuned to targeted biomedical applications.more » « less
-
Abstract Nanofibers made by blending natural and synthetic biopolymers have shown promise for better mechanical stability, ECM morphology mimicry, and cellular interaction of such materials. With the evolution of production methods of nanofibers, alternating field electrospinning (a.k.a. alternating current (AC) electrospinning) demonstrates a strong potential for scalable and sustainable fabrication of nanofibrous materials. This study focuses on AC‐electrospinning of poorly miscible blends of gelatin from cold water fish skin (FGEL) and polycaprolactone (PCL) in a range of FGEL/PCL mass ratios from 0.9:0.1 to 0.4:0.6 in acetic acid single‐solvent system. The nanofiber productivity rates of 7.8–19.0 g/h were obtained using a single 25 mm diameter dish‐like spinneret, depending on the precursor composition. The resulting nanofibrous meshes had 94%–96% porosity and revealed the nanofibers with 200–750 nm diameters and smooth surface morphology. The results of FTIR, XRD, and water contact angle analyses have shown the effect of FGEL/PCL mass ratio on the changes in the material wettability, PCL crystallinity and orientation of PCL crystalline regions, and secondary structure of FGEL in as‐spun and thermally crosslinked materials. Preliminary in vitro tests with 3 T3 mouse fibroblasts confirmed favorable and tunable cell attachment, proliferation, and spreading on all tested FGEL/PCL nanofibrous meshes.more » « less
-
Blended nanofibrous biomaterials from natural and synthetic sources show promise for better biointegration. This study explores high-yield alternating field electrospinning (AFES) of blended cold-water fish skin gelatin (FGEL) and polycaprolactone (PCL) nanofibrous meshes with up to 30 wt% PCL at 7.8–14.4 g/h fiber productivity, depending on the composition. FGEL/PCL nanofibers reveal smooth surface morphology and 237–313 nm average diameters after thermal crosslinking. FTIR analysis indicated little FGEL/PCL interaction and notable changes in PCL crystallinity in the crosslinked nanofibers. A 14-days in-vitro analysis shows good cellular viability and nanofibrous FGEL/PCL mesh stability. Results demonstrate that AFES provides efficient, scalable production of blended FGEL/PCL nanofibrous biomaterials with suitable characteristics.more » « less
-
Abstract With the increasing interest in biopolymer nanofibers for diverse applications, the characterization of these materials in the physiological environment has become of equal interest and importance. This study performs first‐time simulated body fluid (SBF) degradation and tensile mechanical analyses of blended fish gelatin (FGEL) and polycaprolactone (PCL) nanofibrous meshes prepared by a high‐throughput free‐surface alternating field electrospinning. The thermally crosslinked FGEL/PCL nanofibrous materials with 84–96% porosity and up to 60 wt% PCL fraction demonstrate mass retention up to 88.4% after 14 days in SBF. The trends in the PCL crystallinity and FGEL secondary structure modification during the SBF degradation are analyzed by Fourier transform infrared spectroscopy. Tensile tests of such porous, 0.1–2.2 mm thick FGEL/PCL nanofibrous meshes in SBF reveal the ultimate tensile strength, Young's modulus, and elongation at break within the ranges of 60–105 kPa, 0.3–1.6 MPa, and 20–70%, respectively, depending on the FGEL/PCL mass ratio. The results demonstrate that FGEL/PCL nanofibrous materials prepared from poorly miscible FGEL and PCL can be suitable for selected biomedical applications such as scaffolds for skin, cranial cruciate ligament, articular cartilage, or vascular tissue repair.more » « less
-
In an effort to develop and design next generation high power target materials for particle physics research, the possibility of fabricating nonwoven metallic or ceramic nanofibers by electrospinning process is explored. A low-cost electrospinning unit is set up for in-house production of various ceramic nanofibers. Yttria-stabilized zirconia nanofibers are successfully fabricated by electrospinning a mixture of zirconium carbonate with high-molecular weight polyvinylpyrrolidone polymer solution. Some of the inherent weaknesses of electrospinning process like thickness of nanofiber mat and slow production rate are overcome by modifying certain parts of electrospinning system and their arrangements to get thicker nanofiber mats of millimeter order at a faster rate. Continuous long nanofibers of about hundred nanometers in diameter are produced and subsequently heat treated to get rid of polymer and allow crystallize zirconia. Specimens were prepared to meet certain minimum physical properties such as thickness, structural integrity, thermal stability, and flexibility. An easy innovative technique based on atomic force microscopy was employed for evaluating mechanical properties of single nanofiber, which were found to be comparable to bulk zirconia. Nanofibers were tested for their high-temperature resistance using an electron beam. It showed resistance to radiation damage when irradiated with 1 MeV Kr2+ ion. Some zirconia nanofibers were also tested under high-intensity pulsed proton beam and maintained their structural integrity. This study shows for the first time that a ceramic nanofiber has been tested under different beams and irradiation condition to qualify their physical properties for practical use as accelerator targets. Advantages and challenges of such nanofibers as potential future targets over bulk material targets are discussed.more » « less
An official website of the United States government
